このλ(x,y)を 積分因子 という。
P(x,y)dx+Q(x,y)dy=0が完全微分条件をみたしていない場合
\(\frac{\partial \lambda P}{\partial y}=\frac{\partial \lambda Q}{\partial x}\)を満たすようにλ(x,y)P(x,y)dx+λ(x,y) Q(x,y)dy=0と書きなおす。
目次
(2x^4y+2x^3y+11x^2y^2+2x^3y^2+9xy^3)dy+(3x^3y^2+2x^2y^2+5xy^3+3x^2y^3+3y^4)dx=0の解き方
\((2x^4y+2x^3y+11x^2y^2+2x^3y^2+9xy^3)dy+(3x^3y^2+2x^2y^2+5xy^3+3x^2y^3+3y^4)dx=0\)は完全微分形ではない ので積分因子\(\frac{1}{x+y}\)を掛ければ完全微分方程式
$$(3x^2y^2+2xy^2+3y^3)dx+(2x^3y+2x^2y+9xy^2)dy=0$$
になる。
(x^2+3xy+2y^2)dy+(2x^2+3xy+y^2)dx=0の解き方
\((x^2+3xy+2y^2)dy+(2x^2+3xy+y^2)dx=0\) は完全微分形ではない ので積分因子\(\frac{1}{x+y}\)を掛ければ完全微分方程式
$$(2x+y)dx+(x+2y)dy=0$$
になる。
(x^2+3xy+2y^2)dy+(2x^2+3xy+y^2)dx=0 を解くのに必要な道具 :完全微分形の一般解
積分因子 の求め方
\(P(x,y)dx+Q(x,y)dy=0\)が完全微分条件をみたしていない場合
\(\frac{\partial \lambda P}{\partial y}=\frac{\partial \lambda Q}{\partial x}を満たすように\lambda(x,y)P(x,y)dx+\lambda(x,y) Q(x,y)dy=0\)と書きなおす。
この\(\lambda(x,y)\)を 積分因子 という。
(-xy sinx siny+x^2y)dy+(xy cosx cosy+xy^2)dx=0の 積分因子
\(P=xy\ cos\ x\ cos\ y+xy^2,\ Q=-xy\ sin\ x\ sin\ y+x^2yとすると\frac{\partial P}{\partial y}\neq\frac{\partial Q}{\partial x}\)であるから、完全微分方程式ではない。
検索しても計算過程が見つからない場合
検索しても計算過程が見つからない場合ココナラ を利用してみてはいかがでしょうか。
ココナラ 登録方法
会員登録しなくてもサービスの検索はできます。
サービスの購入・出品には会員登録が必要です。
スタディサプリ進路 社会人向け の 使い方
スタディサプリ進路 社会人向けで社会人が数学を学べる大学を検索してみます。
独学で大学数学の微分方程式を勉強しています!
- 1/sinxdxから1/tdtへの変形 トラクトリックス
- 1階非斉次線形微分方程式の一般解
- y’=(1+y)/sinxの解き方 変数分離形
- y’=(x^2-y^2)/2xyの解き方 同次形
- y’=2y/x-yの解き方 同次形
- dy/dx-(3/2)(y-a)^(1/3)=0 の一般解と、それらの解曲線の包絡線である特異解
- x=-e^2t∫3t^2e^(-2t)dt+te^2t∫3te^(-2t)dtの解き方 部分積分
- 特殊解を求めるのに 定数変化法 より クラメルの公式
- x”-x’=sint+2costの一般解(未定係数法)
- x”-2x’+5x=20cost, x(0)=x'(0)=0の解き方 初期値問題
- (t+2)x”-(2t+6)x’+(t+4)x=0 (x=e^t)の一般解 階数低下法
- (t^2+3t+4)x”+(t^2+t+1)x’-(2t+3)x=0 (x=e^(-t))の一般解 階数低下法
- 3つの関数の積の積分
- 4xy”+2y’+y=0の解き方(オイラーの微分方程式)
- 4xy”+2y’+y=0の解き方(フロベニウスの方法)
- x^2y”-2xy’+(x^2+2)y=0の解き方(フロベニウスの方法)
- 級数解法・フロベニウスの方法 使い分け
- x=0 で 等温境界条件 u(0,t)=uをみたし、 x=1 で 断熱境界条件 ux(1,t)=0をみたす解
- x=0 で 断熱境界条件 ux(0,t)=uをみたし、 x=1 で 等温境界条件 u(1,t)=0 をみたす解
- 4x^7y-28x^5y^3+28x^3y^5-4xy^7をr^nsinnθ,r^ncosnθの1次結合として表す。
- 4x^7y-28x^5y^3+28x^3y^5-4xy^7の最大値・最小値 ラプラシアン
- 独学で大学数学の積分因子を勉強しています!
- 完全微分形の一般解
- (x^2+3xy+2y^2)dy+(2x^2+3xy+y^2)dx=0の一般解 完全微分形