x”-x’=sint+2cost を解くのに必要な道具:未定係数法
x”-x’=sint+2cost の一般解を未定係数法で解いたら計算が楽でした。
※数式がスマホで画面からはみ出る場合、横スクロールするかピンチインしてください。
x”-x’=sint+2cost を解くのに必要な道具
未定係数法
未定係数法
非斉次項の形から特殊解を類推する方法
x”-x’=sint+2cost の一般解
基本解
$$s^2-s=0,\ s(1-s)=0,\ x_1=1,\ x_2=e^t$$
特殊解
x=acost+bsintとおくと、x’=-asint+bcost, x”=-acost-bsint-acost-bsint-asint+bcost=sint+2cost
(-a+b-2)cost+(-b-a-1)sint=0
-a+b-2=0…①, -a-b-1=0…②, ①+②=2a-1=0, 2a=1, \(a=\frac{1}{2}\)
\(a=\frac{1}{2}\) を①に代入、\(-\frac{1}{2}+b-2=0,\ b=-\frac{3}{2}\)
$$x=-\frac{1}{2}cos\ t-\frac{3}{2}sin\ t$$
一般解
$$x=c_1+c_2e^t-\frac{1}{2}cos\ t-\frac{3}{2}sin\ t$$
参考文献
リンク
検索しても計算過程が見つからない場合
検索しても計算過程が見つからない場合ココナラ を利用してみてはいかがでしょうか。
ココナラ 登録方法
会員登録しなくてもサービスの検索はできます。
サービスの購入・出品には会員登録が必要です。
ココナラ 登録方法 会員登録しなくてもサービスの検索はできます。サービスの購入・出品には会員登録が必要です。会員登録をクリック メールアドレスを入力して メール…
jikuu.site
スタディサプリ進路 社会人向け の 使い方
スタディサプリ進路 社会人向けで社会人が数学を学べる大学を検索してみます。
スタディサプリ進路 社会人向け の 使い方 スタディサプリ進路 社会人向け の 使い方 スタディサプリ進路 社会人向けで社会人が数学を学べる大学を検索してみます…
jikuu.work
独学で大学数学の微分方程式を勉強しています!
- 1/sinxdxから1/tdtへの変形 トラクトリックス
- 1階非斉次線形微分方程式の一般解
- y’=(1+y)/sinxの解き方 変数分離形
- y’=(x^2-y^2)/2xyの解き方 同次形
- y’=2y/x-yの解き方 同次形
- dy/dx-(3/2)(y-a)^(1/3)=0 の一般解と、それらの解曲線の包絡線である特異解
- x=-e^2t∫3t^2e^(-2t)dt+te^2t∫3te^(-2t)dtの解き方 部分積分
- 特殊解を求めるのに 定数変化法 より クラメルの公式
- x”-x’=sint+2costの一般解(未定係数法)
- x”-2x’+5x=20cost, x(0)=x'(0)=0の解き方 初期値問題
- (t+2)x”-(2t+6)x’+(t+4)x=0 (x=e^t)の一般解 階数低下法
- (t^2+3t+4)x”+(t^2+t+1)x’-(2t+3)x=0 (x=e^(-t))の一般解 階数低下法
- 3つの関数の積の積分
- 4xy”+2y’+y=0の解き方(オイラーの微分方程式)
- 4xy”+2y’+y=0の解き方(フロベニウスの方法)
- x^2y”-2xy’+(x^2+2)y=0の解き方(フロベニウスの方法)
- 級数解法・フロベニウスの方法 使い分け
- x=0 で 等温境界条件 u(0,t)=uをみたし、 x=1 で 断熱境界条件 ux(1,t)=0をみたす解
- x=0 で 断熱境界条件 ux(0,t)=uをみたし、 x=1 で 等温境界条件 u(1,t)=0 をみたす解
- 4x^7y-28x^5y^3+28x^3y^5-4xy^7をr^nsinnθ,r^ncosnθの1次結合として表す。
- 4x^7y-28x^5y^3+28x^3y^5-4xy^7の最大値・最小値 ラプラシアン
- 独学で大学数学の積分因子を勉強しています!
- 完全微分形の一般解
- (x^2+3xy+2y^2)dy+(2x^2+3xy+y^2)dx=0の一般解 完全微分形
独学 で大学数学の 微分方程式 を勉強 したいと思ったことありませんか? 実は、僕も大学数学の 微分方程式 を 独学 で学びたいと思い勉強を始めました。 結果、…
jikuu.work